

Global Potential for Adaptively Managing Nitrogen Using Active Sensors

Steve Phillips, Ph.D.
North American Program
Director, Southeast United States

Are Sensors Relevant in Developing-

World Agriculture?

Are Sensors Relevant in Developing-World Agriculture?

Cook et al., 2003

"We question this assertion and postulate that the basic purpose of precision agriculture – to provide spatial information to reduce uncertainty – far from being a luxury, and could be viewed as essential to accelerate change in the developing world..."

"The need for [site-specific] information is actually greater [in the developing world], principally because of stronger imperative for change and lack of conventional support."

The Nutrient Expert decision support tool

- Nutrient Expert is a computer-based decision support tool for crop advisers. It uses the principles of site-specific nutrient management (SSNM).
- SSNM aims to supply a crop's nutrient requirements tailored to a specific field or growing environment.
 - accounts for indigenous nutrient sources
 - applies fertilizer at optimal rates and at critical growth stages → 4Rs (right source, right rate, right time, right place)

Estimating fertilizer requirement

- Estimate attainable yield
- Determine yield response to fertilizer application

 Estimate nutrient uptake requirement from the relationship between grain yield and balanced uptake of nutrients at harvest

Nutrient Expert is developed through collaboration with local experts and stakeholders

- Collaboration with target users and stakeholders through consultation meetings
 - Collection of locally-available agronomic data and information
 - Field testing, evaluation, and refinement of the software
 - Building confidence in the concept with collaborators

Nutrient Expert recommendation:

- Tailored to location-specific conditions
- Consistent with 4Rs:
 - right source
 - right rate
 - right time
 - right place
- Option to tailor recommendation based on farmer's resource availability

Nutrient Expert for Hybrid Maize

	Growth stage	Days after	Soil moisture	Fertilizer sources	Weight of full bag (kg)		other sources of nutrients rop residue (rice): low
	Basal	0	sufficient	Urea	50	2 📙	
				Single Super Phosphate	50	3.5	Organic fertilizer: 3.5 t
L				Muriate of Potash	50	1	N: 26 kg
,	V6	25-30	sufficient	Urea	50	2.5	P ₂ O ₅ 7 kg
							K ₂ O: 18 kg
	V10	35-40	sufficient	Urea		2	

Right time

Fertilizer rates are adjusted to field size

Deficient Nutrient	Recommendation to correct deficiency
Sulfur	Apply 30-60 kg/ha elemental sulfur or 227-375 kg/ha gypsum as basal.
Zinc	Apply 25-30 kg/ha zinc sulfate as basal.

Right source

Right rate

Field validation results of Nutrient Expert for maize

India, Indonesia, Philippines (2010-2013): Farmers' current yield level < attainable yield

NE for maize performance across 22 sites in Indonesia

Parameter	Unit	FFP	NE	Difference (NE – FFP)
Grain yield	t/ha	7.51	8.40	0.89 ***
Fertilizer N	kg/ha	173	160	-12.30 ns
Fertilizer P ₂ O ₅	kg/ha	43	33	-10.04 *
Fertilizer K ₂ O	kg/ha	28	41	13.15 **
Fertilizer cost	USD/ha	126	126	0.08 ns
Gross return above seed & fertilizer	USD/ha	1761	2032	270.94 ***

^{***, **, *:} significant at <0.001, 0.01, and 0.05 level; ns = not significant

Data from 22 farmers' fields in five locations under irrigated (rice-rice-maize) and favorable rainfed (maize-maize) environments, 2010-2011

Seed cost: USD 5.08/kg; Price of maize grain: USD 0.27/kg; Price of fertilizer: actual local prices; USD 1 = IDR 8850

NE for maize performance across 24 sites in the Philippines

Parameter	Unit	FFP	NE	Difference (NE – FFP)
Grain yield	t/ha	7.49	9.16	1.67 ***
Fertilizer N	kg/ha	114	132	18 ns
Fertilizer P ₂ O ₅	kg/ha	26	36	10 ***
Fertilizer K ₂ O	kg/ha	18	35	17 ***
Fertilizer cost	USD/ha	176	241	65 ***
Gross return above seed & fertilizer	USD/ha	1730	2126	395 ***

^{***, **, *:} significant at <0.001, 0.01, and 0.05 level; ns = not significant

Data from 24 farmers' fields in six regions under favorable rainfed (maize-maize, rice-maize) environments, dry season 2010-2011

Price of seeds, fertilizer, and maize grain are based on actual local prices; USD 1 = Php 43

FFP vs SSNM (NE) in Iloilo, Philippines

NE for maize performance across 27 sites in India

Andhra Pradesh (n = 27)

Parameter	Unit	FP	NE	NE	– FP
Grain yield	kg/ha	8568	9699	1131	***
Fertilizer N	kg/ha	288	203	-85	**
Fertilizer P ₂ O ₅	kg/ha	153	54	-99	***
Fertilizer K ₂ O	kg/ha	68	74	6	ns
Fertilizer cost	INR/ha	9509	5459	-4050	**
GRF ¹	INR/ha	76167	91770	15603	***

^{***, **, *:} significant at <0.001, 0.01, and 0.05 level; ns = not significant ¹ GRF = gross return above fertilizer cost

Prices (in INR/kg): maize = 10.00; N = 11.40; P_2O_5 = 32.20; K_2O = 18.80

Field validation results of Nutrient Expert for maize in China (2010-2012)

Year	Treatment	n	Grain yield _ (t/ha)	Fertil	Fertilizer rate (kg/ha)			
Teal		n		N	P_2O_5	K ₂ O		
2010	FP	138	8.6	225	53	40		
	Soil test	127	8.8	195	47	69		
	NE	138	8.7	138	50	63		
2011	FP	185	10.0	222	64	44		
	Soil test	90	10.5	215	65	86		
	NE	185	10.6	161	49	61		
2012	FP	138	10.6	235	67	59		
	Soil test	109	11.1	204	60	72		
	NE	138	10.9	167	63	74		

Estimating fertilizer requirement for Nutrient Expert

- Estimate attainable yield
- Determine yield response to fertilizer application
- Estimate nutrient uptake requirement
- Estimate site-specific nutrient use efficiency

Developing a Sensor-Based Program

- 1. Calibration
- 2. Validation
- 3. Development
- 4. Training

Calibration

Establish sensor-based model for predicting grain yield potential

Validation

 Evaluate the performance of sensor-based N decision tool against the commonly applied flat N rate

N management in rice: application of GreenSeeker optical sensorguided fertilizer in India

Fertili	zer N ap	plication (kg	N/ha)	Grain yield (t/ha)			
Basal	sal 21DAT	Γ 42 DAT (GS guided)*	Total	2006	2007	2008	2008
				PR118	PR118	PAU201	PHB71
0	0	0	0	3.85	4.05	4.16	3.42
40	40	40	120	6.19	5.01	6.86	6.16
30	30	32	92	5.63			
30	30	23	83		4.74		
30	30	48	108			6.59	
30	30	49	109				6.09
L.S.D. (p=0.05)				0.774	0.337	0.488	0.488

Sensor Calibration and Validation Research

- Li et al., 2009
- Bijay-Singh et al., 2011
- Cao et al., 2012
- Yao et al., 2012
- Xue et al., 2013

Wheat

Rice

Development and Training

Challenges and Opportunities

- Cost / Profit potential
 - Handheld sensors
- Delivery mechanism for rate recommendations
 - Mobile device technology
- Continued research / extension support
 - Incomplete follow-through
- Technical support
 - Equipment operation, data collection, rate calculation
- Can be incorporated into existing SSNM strategies
- Logistics in small-holder system
 - Ownership of equipment
 - Reference strips

Global Population and Food Security

- Population increases are placing greater pressure on the food security of certain regions of the world
- Potential food security challenges are going to affect all world residents, regardless of their location.

Application of precision agriculture technologies will be essential for sustainable access to food for a global population

Global food security will be dependent on how well we adapt the principles of precision agriculture for the small holder systems of Asia

Thank You

sphillips@ipni.net

