

Corn Acreage, Fertilizer Use, & Spring Nutrient Discharge in the Mississippi River Basin: Relationships & Impact on Hypoxia

C.S. Snyder, PhD, CCA Nitrogen Program Director

Northern Gulf of Mexico Hypoxia: Complex Causal Factors

- Natural event
 - <2 mg dissolved O₂/L
 - increased area and frequency in last half century
- Climate, weather
- Freshwater inflows
 - stratification of freshwater over saltwater
- Coastal water circulation patterns, water retention time
- Nutrient loadings (N, P, Si)
- Loss of processing marsh along Louisiana coast

Nutrients and Hypoxia in the Gulf of Mexico -An Update on Progress, 2005

In I.A. Smith

Since it on the presented stress with the U.S. Bornstein and Protection Agency. These the AGE 2014 control from the UAE 2014 control from the Agency is the stress of the UAE 2014 control from the UAE 2014 control from the UAE 2014 control from the Agency is the stress of the UAE 2014 control from the Agency is the Agency

Similar 1992, the real versus of hypersis (gf. equ.) of the Symbol strength of a disk result over a disk of the strength of the strength of the disk of the disk of the disk of the strength of the strength of the disk of the disk of the disk of the strength of the disk of the disk of the disk of the disk of the strength of the disk of the disk of the disk of the origent of the strength of the disk of the disk of the origent of the disk of the origent of the disk of the

and L. Aread activate of Appendix in the constraint Gulf of Malace, 20 assessment by second outlines constrained in bath help Data access for Second USEDIN.

Federal states, and train a administrative developed in a fastime Figure and define takes. Enscir administration of the part of relations for hyperprint ones in the Galf at Warner et al. Strenger remains arrange of 10000 V (10000 cm)¹⁵ to V(1001 Cm)¹⁵ V(1), 2010 Theorem 20, advance supersystem on any photon and the training partners, neurons, based on the filter one of the theory of the training of the distance strengtheners and the distance resolutions, making the filter one of the training of the training of the training the filter one of the training of the training of the training the filter one of the training of the training of the training the filter one of the training of the training of the training and the training of the training of the training of the training and Educer (2000) have required oness of the resolution momental of the training filter of the training of the filter of the training the strengtheners of the training filter of the training training the training the strengtheners of the training of the training one of the training training the strengtheners of the training the training training the training of the training training the strengtheners of the training the training training the training of the training training training training the training training the training training the training training training the training tr 2 months and provide the second secon

do chapter in and protocorse was and soon of the shell begins and of Territors Bay in Lemmas. Hence two and there a suggest fast is notice stratification wavelage gap for the dominant faster affecting the send system of the polarization of the dominant faster of the single system of the Maximum Price Websites the forgets.

(1) A the structure of the structure

BLO, WCVTL 2000. Yourn P. Checkage relation and (WHOOK WITE 2007) were reared principally at NU, P. Ack large relation to traffic reported as the readmand measure of NU, and WO, Cataso & W. Lett Be 2000 1293-342 report recommended reflection in Scient Sciences (2000) 1293-342 report recommended reflection in Sciences (2000) 1293-342 report recommended reflect

Where choices and source for their strength V is interacting $V \neq physical strength and practices. We contain <math display="inline">(W_{1}, \gamma)$ strength (W_{2}, γ) strengt (W_{2}, γ) strength (W_{2}, γ) streng

EPA Hypoxia SAB report suggested 45% less total N <u>AND</u> 45% less total P discharge to the Gulf to reduce hypoxia

Gulf of Mexico Hypoxia Area

Square km of hypoxia

Green arrows indicate years with hurricane disruption of the hypoxic zone before or during annual measurement in late July

Year

Hypoxia data from N. Rabalais, LUMCON

Predicting Hypoxia

- Scavia et al. 2003. Predicting the response of Gulf of Mexico hypoxia to variations in Miss. River N load. Limnol. Oceanogr. 48(3), 2003, 951–956
 - May-June total N loads, to predict hypoxia, 1985-2002
 - Also hindcast to 1972

- Turner et al. 2006. Predicting
 summer hypoxia in the northern
 Gulf of Mexico... Marine Pollution Bull.
 52:139-148.
 - 1985 to 2004, also hindcast to 1978
 - R² for nutrient flux 2 months (May) before hypoxia measured

•	NO ₃ ⁻ + NO ₂ ⁻ N	0.50
•	Total N	0.27
•	Ortho-P	0.54

- Total P
 0.60
- 1978-2004 error residual increased with years (system "memory")
- Best R² = 0.82: May NO₃⁻ + NO₂⁻ N flux and "Year"

Campbell & Booth. 2007. Spring Nitrate Flux in the Miss. River Basin: A Landscape Model with Conservation Applications. Environ. Sci. Technol., 41(15): 5410-5418

- "N derived from fertilizer runoff in the Mississippi River Basin (MRB) is acknowledged as a primary cause of hypoxia in the Gulf of Mexico."
- Regressions for 1990-2002, using SPARROW
 - relationship between springtime (March-June) nitrate loading to Gulf and
 - "fertilizer N" runoff 59%, atmospheric nitrate deposition -17%, animal waste- 13%, municipal waste- 11%
 - R² = 0.65 for March-June modeled delivery; R² = 0.86 for April-July measured delivery

Greene et al. 2009. Multiple regression models for hindcasting and forecasting midsummer hypoxia

- in the Gulf of Mexico. Ecol. Applic.19(5):1161–1175
- Model input variables derived from two load estimation methods:
 - the adjusted maximum likelihood estimation (AMLE) and the composite (COMP) method, developed by USGS
 - Hypoxia predicted 1955-2007
 - May NO₃₊₂ load R² = 0.42 P = 0.001
 - May streamflow + (May NO₃₊₂ conc. COMP) + (Feb. TP conc. COMP) $\mathbf{R}^2 = \mathbf{0.60} \quad \mathbf{P} = \mathbf{0.003}$
 - May streamflow + (May NO₃₊₂ conc.) + (Feb. TP conc.) + Epoch $R^2 = 0.80$ P < 0.0001
 - Predicted that five years after instantaneous 50% NO₃ reduction or dual 45% NO₃ and TP reduction, ... possible to achieve significant reduction in hypoxic area
 - If nutrient reduction targets achieved gradually (e.g., over 10 years), > 10 years required before significant downward trend in nutrient concentrations and hypoxic area

OBJECTIVES

- For 1985-2009, evaluate relationships between
 - Measured annual Gulf hypoxia and
 - nutrient flux (annual, spring (April-June), and May)
 - Spring and annual nutrient flux to Gulf and
 - fertilizer N and P consumption in MARB
 - harvested corn and soybean area in MARB
 - Data/information sources
 - Hypoxic area N. Rabalais
 - Nutrient flux USGS, B. Aulenbach et al. (LOADEST AMLE)
 - Corn and soybean harvested area USDA NASS
 - Fertilizer consumption AAPFCO & TFI
 - MARB nutrient balance EPA hypoxia SAB report
 - Discuss more recent nutrient flux trends and balances

Annual and Spring Combined Miss. & Atchafalaya River Streamflow

See Greene et al. (2009) and <u>http://toxics.usgs.gov/hypoxia</u> /mississippi/nutrient_flux_yiel d_est.html

for more detail and historical records

Combined Mississippi and Atchafalaya River (MAR) Spring Discharge of N to the Gulf of Mexico

Combined Mississippi and Atchafalaya River (MAR) Spring Discharge of P to the Gulf of Mexico, 1980-2009

Fertilizer N and P Consumption and Harvested Corn Hectares in MARB, 1984-2008

Variability in Hypoxia Size 1985-2008 Explained by Corn & Soybean Hectares

Factor(s)	Adj. R ²	F significance
MARB Harvested corn ha	0.16	0.03
MARB Harvested soybean ha	0.13	0.05
MARB harvested corn + soybean ha	0.21	0.02

Variability in Hypoxia Size 1985-2009 Explained by Nutrient Flux to Gulf

Factor(s)	Adj. R ²	F signif.	Adj. R ²	F signif.
Spring NO ₃ -N	0.26	0.006	0.36	0.001
Spring TN	0.12	0.06	0.24	0.009
Annual NO ₃ -N	0.11	0.06		
Annual TN	-0.02	0.44		
Spring orthophosphate-P	0.27	0.005	0.28	0.004
Spring TP	0.18	0.02	0.27	0.005
Annual orthophosphate-P	0.23	0.01		
Annual TP	0.08	0.10		
Spring NO ₃ -N and ortho-P ^a	0.25	0.02	0.33	0.006

 ^a Spring NO₃-N and ortho-P highly correlated: R²=0.78, F signif.=8.1 x 10⁻⁹

. May flux

Variability in Spring NO₃-N and Ortho-P Flux Explained by Harvested Corn & Soybean Hectares, 1985-2008

Relationships	Adj. R ²	F signif.
Spring NO ₃ -N flux vs. corn ha	-0.03	0.52
Spring NO ₃ -N flux vs. soybean ha	-0.04	0.91
Spring NO_3 -N flux vs. corn + soybean ha	-0.04	0.78
Spring ortho-P flux vs. corn ha	0.04	0.18
Spring ortho-P flux vs. soybean ha	-0.02	0.48
Spring ortho-P flux vs. corn + soybean ha	0.02	0.25

Spring Ortho-P flux vs. harvested corn hectares, 1985-2008

Harvested corn hectares (1,000)

Variability in Spring NO₃-N, TN, Ortho-P and TP Flux Explained by MARB Fertilizer N and P Consumption, 1985-2007

Relationships	Adj. R ²	F signif.
Spring NO ₃ -N flux vs. fertilizer N	-0.03	0.51
Spring TN flux vs. fertilizer N	-0.05	0.84
Spring ortho-P flux vs. fertilizer P	0.12	0.06
Spring TP flux vs. fertilizer P	-0.04	0.62

Has nutrient discharge increased ?

Notable

Declines

Table 1. Average annual and spring (April-June) combined water flow, NO ₃ -N, total Kjeldahl N (organic N + NH ₄ -N), and total N discharge from the combined Mississippi and Atchafalaya Rivers to the Gulf of Mexico for 2001 to 2005 compared against the reference period 1980- 1996. Source: EPA SAB, 2008.				
	1980-1996	2001-2005	Change	
	million m ³ (water)	or million metric tons	%	
Annual				
Water	692,500	652,500	-6	
NO ₃ -N	0.96	0.81	-15	
Total Kjeldahl N	0.61	0.43	-30	
Total N	1.58	1.24	-21	
Spring			ł	
Water	236,800	210,600	-11	
NO ₃ -N	0.38	0.33	-12	
Total Kjeldahl N	0.21	0.14	-32	
Total N	0.59	0.48	-19	

Discharge by 5 Major Sub-basins Where is it coming from?

NH -N and

Table 2. Average nutrient discharge for the five large sub-basins in the Mississippi-Atchafalaya River Basin for the 2001-2005 water years (EPA SAB, 2008). Values in parentheses indicate % of total Basin discharge.

				4 Annie N	
	A	VAC 1 (1			т. п
Land	Area	Water flow	NO ₃ -N	(Total Kjeldahi IV)	lotal P
km²	mi ² 10	million m ⁹ yr	84	,000 metric tons/yr	64
493,900	190,600	116,200 (18)	349 (43)	136 (32)	40 (26)
525,800	203,000	279,800 (43)	335 (41)	175 (41)	59 (38)
1,353,300	522,400	60,080 (9)	79 (10)	84 (20)	30 (20)
584,100	225,500	67,200 (10)	29 (4)	44 (10)	9 (6)
183,200	70,700	129,550 (20)	22 (3)	-8 (-2)	16 (10)
	Land / km² 493,900 525,800 1,353,300 584,100 183,200	Land Area km² mi² 16 493,900 190,600 525,800 203,000 1,353,300 522,400 584,100 225,500 183,200 70,700	Land AreaWater flowkm²mi²million m /yr493,900190,600116,200 (18)525,800203,000279,800 (43)1,353,300522,40060,080 (9)584,100225,50067,200 (10)183,20070,700129,550 (20)	Land AreaWater flowNO_Nkm²milion m/y84_1493,900190,600116,200 (18)349 (43)525,800203,000279,800 (43)335 (41)1,353,300522,40060,080 (9)79 (10)584,100225,50067,200 (10)29 (4)183,20070,700129,550 (20)22 (3)	Land Area Water flow NON (Total Kjeldahl N) km² mi² 61

¹ Nutrient discharge calculated by differences. Negative values occur downstream where a downstream site had a lower discharge than the upstream site, that result in errors in discharge estimates or a real net loss of nutrients.

USGS Estimates of Loss and Delivery of N and P to the Gulf

Sub-basin Contributions of N & P

Table 3. Average annual nutrient yields for the five large sub- basins in the Mississippi-Atchafalaya River Basin for water years 2001-2005. Source: EPA SAB, 2008.				
Sub-basin	NO ₃ -N	NH ₄ -N and organic N (Total Kjeldahl N)	Total P	
		kg/ha/yr		
Upper Mississippi 🗕	7.1	2.7	0.8	
Ohio-Tennessee	6.4	3.3	1.1	
Missouri	0.6	0.6	0.2	
Arkansas-Red	0.5	0.8	0.1	
Lower Mississippi	1.2	-0.5	0.9	

Figure 8. Nitrogen mass balance and net inputs for major regions of the Mississippi-Atchafalaya River Basin through 2005. Source: EPA SAB, 2008.

Net N inputs fertilizer + atm. dep.+ N₂ fixed minus net food and feed imports •assumed SON in steady state •manure is part of feed imports after Goolsby et al. 1999; McIsaac et al. 2001, 2002

> Voluntary actions are reducing the "net" Nitrogen (N) balance in the Mississippi River Basin; especially in two key upper sub-basins.

Figure 9. Phosphorus mass balance and net inputs for major regions of the Mississippi-Atchafalaya River Basin through 2005. Source: EPA SAB, 2008.

Voluntary actions are also reducing the "net" phosphorus (P) balance in the Mississippi River Basin; especially in two key upper subbasins.

This is a concern, however, because soil P may be "mined", and may lead to yield reductions and lower N use efficiency

Summary for 1985 to 2009

- Harvested corn and soybean
 - weakly related to hypoxia ($R^2 < 0.22$)
 - no significant relationship to N and P flux to Gulf
- Hypoxia most related to spring (April-June) & May NO₃-N & ortho-P flux (R² = 0.26 to 0.36; P <0.006)
- 2001-2005 compared to 1980-1996
 - annual NO₃-N and TN flux declined 15 and 21%
 - annual NO₃-N and TN flux declined 12 and 19%
 - Spring and annual ortho-P and TP tended to increase slightly
- MARB fertilizer N and P consumption
 - spring ortho-P flux weakly related (R²= 0.12) with fertilizer P, but no other significant relationships with nutrient flux

Kitchen and Goulding (2001) in Nitrogen in the Environment: Sources, Problems and Management

- "nitrogen use efficiency ...rarely exceeds 70% often ranges from 30-60%"
- "conversion of N inputs to products for arable crops can be 60-70% or even more"

-

EDITORS R.F. FOLLETT AND J.L. HATFIELD

N Use Efficiency (NUE) Terms

(after Snyder and Bruulsema 2007)

NUE term	Calculation	Reported Examples
PFP Partial factor productivity	Y/F	40 to 80 units of cereal grain per unit of N
AE Agronomic efficiency of applied N	(Y-Y ₀)/F	10 to 30 units of cereal grain per unit of N
PNB Partial N balance (removal to use ratio)	U _H /F	0 to greater than 1.0- depends on native soil fertility and fertility maintenance objectives <1 in nutrient deficient systems (fertility improvement) >1 in nutrient surplus systems (under- replacement) Slightly less than 1 to 1 (system sustainability)
RE Apparent crop N recovery efficiency	(U-U ₀)/F	0.3 to 0.5 – N recovery in cereals – typical 0.5 to 0.8 – N recovery in cereals – best management

Nitrogen Partial Factor Productivity for Corn in the U.S.

PFP_N for U.S. Corn vs. Annual Total N Flux to Gulf of Mexico

1984-2007 Flux of Total N vs. PFP_N

Improving N Use Efficiency through 4R Nutrient Stewardship

Know your fertilizer rights

By Tom Bruulsema, International Plant Nutrition Institute, Guelph, ON, Canada; **Jerry Lemunyon**, USDA-NRCS, Fort Worth, TX; and **Bill Herz**, The Fertilizer Institute, Washington, DC

Crops & Soils 42(2): Mar-Apr 2009

The four fertilizer rights: Selecting the right source

By Robert Mikkelsen, International Plant Nutrition Institute, Merced, CA; *Greg Schwab*, University of Kentucky, Lexington; and *Gyles Randall*, University of Minnesota, Waseca

Crops & Soils 42(3): May-Jun 2009

Selecting the right fertilizer rate: A component of 4R nutrient stewardship

By S.B. Phillips, International Plant Nutrition Institute, Owens Cross Roads, AL; *J.J. Camberato*, Purdue University, West Lafayette, IN; and *D. Leikam*, Fluid Fertilizer Foundation, Manhattan, KS

Crops & Soils 42(4): Jul-Aug 2009

The four fertilizer rights: timing

By W.M. Stewart, International Plant Nutrition Institute, Norcross, GA; J.E. Sawyer, Iowa State University, Ames, IA; and M.M. Alley, Virginia Tech, Blacksburg, VA

Crops & Soils 42(5): Sep-Oct 2009

The four fertilizer rights: placement

Scott Murrell (IPNI),Tony Vyn (Purdue), Guy Lafond (AAFC), Dave Finlayson (CFI), Crops & Soils 42(6): Nov-Dec 2009 (in process)

Improving N Use Efficiency

• Implementation of fertilizer best management practices (BMPs)

• Site-Specific Nutrient Management (SSNM) - to help achieve improved economic results and environmental objectives

Thank You

Better Crops, Better Environment ... through Science

www.ipni.net