Nitrogen Source and Placement Affect Soil Nitrous Oxide Emissions from Irrigated Corn in Colorado

By Ardell D. Halvorson and Stephen J. Del Grosso

Research shows that N fertilizer source affects growing season soil N₂O emissions from irrigated corn systems in Colorado. Use of controlled-release and stabilized N sources reduced N₂O emissions under NT and ST corn production systems up to 66% when compared to commonly used urea and up to 43% compared to UAN. Urease and nitrification inhibitor additions to urea and UAN resulted in significant reductions in N₂O emissions, as did polymer-coated urea. Surface broadcast application of N sources resulted in lower N₂O emissions than surface band applications. Choice of N source and placement can be valid management alternatives for reducing N₂O emissions to the environment in semi-arid areas.

Nitrogen fertilization is essential for optimizing crop yields and economic returns in irrigated cropping systems in the Central Great Plains area of the USA. However, N application generally increases the emissions of the potent greenhouse gas, N₂O, from these systems. Nitrous oxide is produced through nitrification and denitrification processes in the soil. Agriculture contributes approximately 67% of the total anthropogenic N₂O emissions in the USA. Information on how N fertilizer source might affect soil N₂O emissions from semi-arid, irrigated cropping systems is limited. Halvorson et al. (2008, 2009, 2010a, 2010b) showed N rate, N source, tillage, and crop rotation influence N₂O emissions from semi-arid, irrigated cropping systems in northern Colorado.

This article presents a summary of the effects of N source on soil N₂O emissions from studies conducted from 2009 to 2011 within NT and ST irrigated corn systems located near Fort Collins, Colorado on a Fort Collins clay loam soil. Nitrogen rates were 0 and 202 kg N/ha (0 and 180 lb N/A). Nitrogen sources compared to the commonly used granular urea (46% N) and liquid UAN (32% N) included a controlled-release polymer-coated urea (ESN®), stabilized urea and UAN products containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus®), and UAN containing a slow release N source (Nfusion®). A subsurface band ESN treatment (ESNssb) was also included. Each N source, except ESNssb, was surface band applied at corn emergence and watered into the soil the next day with a linear move sprinkler irrigation system. Nitrous oxide fluxes were measured two to three times per week during the growing seasons using vented static chambers and a gas chromatograph analyzer (see photos). Details on methodology can be found in Halvorson et al. (2011) and Halvorson and Del Grosso (2012).

Nitrogen Source Effects on N₂O Emissions

Nitrous oxide fluxes increased within days following the application of all N sources except for ESN, which had a delayed release of N₂O. An example of the cumulative change in N₂O flux for several N sources with time during the 2010-growing season for NT is shown in Figure 1. Urea and UAN reached 80% of their growing season N₂O emissions 24 and 23 days after N application, respectively. UAN+AgrotainPlus and SuperU reached 80% of their growing season emissions 40 and 46 days, respectively, after N application. Nitrous oxide emissions from ESN and ESNssb followed a different pattern from the other N sources, remaining low until mid-June when N₂O-N fluxes started to increase. The ESNssb and ESN treatments reached 80% of their growing season emissions 65 and 70 days after N application, respectively.

Total cumulative growing season N₂O-N fluxes during the corn growing season are shown in Figure 2 for ST for all N sources evaluated, plus a blank treatment (no N ap-
Better Crops/Vol. 96 (2012, No. 4)

plied) located in the same plot area as the N sources and a check treatment (no N applied for 10 years) located in a separate plot. The 2-year average ST growing season N$_2$O-N emissions from the controlled-release N fertilizers and UAN were significantly lower than dry granular urea. The ESNssb treatment had significantly higher N$_2$O emissions than the UAN+Nfusion, UAN+AgrotainPlus, blank, and check treatments. The UAN+AgrotainPlus and UAN+Nfusion treatments had lower N$_2$O emissions than UAN. The check treatment had the lowest level of growing season N$_2$O-N emissions, with the blank being similar to the check. Compared to dry granular urea, UAN+AgrotainPlus reduced N$_2$O-N emissions 70% in the ST system, UAN+Nfusion 57%, SuperU 53%, ESN 49%, UAN 42%, and ESNssb 33%. Compared to liquid UAN, UAN+AgrotainPlus reduced N$_2$O-N emissions 49%, UAN+Nfusion 26%, SuperU 19%, and ESN 12%. Nitrification was thought to be the main pathway of N$_2$O loss in our studies. Similar differences in growing season N$_2$O emissions were observed among N sources in the NT system, which did not include UAN+Nfusion, as those observed in the ST system. Combining the ST and NT data sets showed that there was no tillage x N treatment interaction, with the N$_2$O emissions from the ST and NT systems being similar (Halvorson and Del Grosso, 2012). Therefore, we combined the NT and ST N$_2$O data sets to obtain an overall average growing season N$_2$O emissions for the common N sources from both tillage systems to provide 4 site-years of observations (Figure 3).

All N sources had growing season N$_2$O-N emissions lower than urea. Surface banded ESN and UAN+AgrotainPlus had lower emissions than UAN. Compared to dry granular urea, averaged across tillage systems and years, UAN+AgrotainPlus reduced N$_2$O-N emissions 66%, SuperU 50%, ESN 53%, UAN 42%, and ESNssb 23%. Compared to liquid UAN, UAN+AgrotainPlus reduced N$_2$O-N emissions 43%, ESN 19%, and SuperU 14%. Growing season N$_2$O-N losses were consistently <0.4% of N applied for the controlled-release N sources and UAN, except ESNssb (0.55%), with urea having a loss of 0.74% (Figure 4). The N$_2$O-N loss per unit of N applied was highest for urea and lowest for UAN+AgrotainPlus. The growing season N$_2$O-N emissions from the application of a unit of the controlled-release N fertilizer in this study were considerably lower (<0.5%) than the default 1% from Tier I methodology of IPCC (2006) used to estimate yearly N$_2$O-N emissions resulting from N fertilizer application.

N$_2$O Emissions as a Function of Grain Yield

Grain yields did not vary with N source (Figure 2 and

Figure 2. Average (2009 and 2010) growing season soil nitrous oxide (N$_2$O) emissions as a function of N source in a strip-till, irrigated continuous-corn cropping system near Fort Collins, Colorado (Halvorson et al., 2011). Each N source was surface banded near the corn row at emergence, except ESNssb was subsurface banded. UAN+Nf is UAN plus Nfusion and UAN+AP is UAN plus AgrotainPlus. Average grain yields (t/ha) are shown in a white box within each bar. (1 t/ha = 15.9 bu/A).

Figure 3. Growing season soil nitrous oxide (N$_2$O) emissions as a function of N source averaged over strip-till and no-till irrigated corn studies near Fort Collins, Colorado in 2009 and 2010 (Halvorson et al., 2011; Halvorson and Del Grosso, 2012). Average grain yields (t/ha) are shown in a white box within each bar. (1 t/ha = 15.9 bu/A).

Figure 4. Growing season soil nitrous oxide (N$_2$O) loss per unit of N applied as a function of N fertilizer source averaged over strip-till and no-till irrigated corn production systems in 2009 and 2010 near Fort Collins, Colorado (Halvorson and Del Grosso, 2012). Average grain yields (t/ha) are shown in a white box within each bar.
Growing season N losses as N\textsubscript{2}O-N were consistently < 0.5% of continuous corn cropping systems when compared to urea; and have significant potential to reduce N\textsubscript{2}O-N emissions per unit data show that the controlled-release fertilizers investigated is not an economically sustainable management practice. These urea and ESNs. On an agronomic basis, the N\textsubscript{2}O emissions efficiency for ESN, SuperU, and UAN+AgrotainPlus than for grain yield and N uptake showed greater agronomic N use treatment had the lowest level of N\textsubscript{2}O emissions per t grain, but emissions per t grain than UAN, ESN, and SuperU. The check emissions per t grain than ESN (55 g N\textsubscript{2}O-N/t grain), SuperU (87 g N\textsubscript{2}O-N/t grain) treatment had greater N\textsubscript{2}O emissions when averaged over strip-till and no-till systems (3 site-years). Average grain yields (t/ha) are shown in a white box within each bar. (1 t/ha = 15.9 bu/A).

3) in our studies. Expressing N\textsubscript{2}O emissions as a function of grain yield and N uptake showed greater agronomic N use efficiency for ESN, SuperU, and UAN+AgrotainPlus than for urea and ESN. On an agronomic basis, the N\textsubscript{2}O emissions per unit of grain yield were highest for urea (115 g N\textsubscript{2}O-N/t grain) and lowest for UAN+AgrotainPlus (36 g N\textsubscript{2}O-N/t grain). The ESN (87 g N\textsubscript{2}O-N/t grain) treatment had greater N\textsubscript{2}O emissions per t grain than ESN (55 g N\textsubscript{2}O-N/t grain), SuperU (56 g N\textsubscript{2}O-N/t grain), UAN+AgrotainPlus, and the check (19 g N\textsubscript{2}O-N/t grain) treatments. UAN+AgrotainPlus had lower N\textsubscript{2}O emissions per t grain than UAN, ESN, and SuperU. The check treatment had the lowest level of N\textsubscript{2}O emissions per t grain, but is not an economically sustainable management practice. These data show that the controlled-release fertilizers investigated have significant potential to reduce N\textsubscript{2}O-N emissions per unit of grain production within irrigated corn production systems in the Central Great Plains.

Band versus Broadcast N and N\textsubscript{2}O Emissions

Three N sources, urea, SuperU, and ESN were surface band and broadcast applied to ST (2010 and 2011) and NT (2011) corn plots to evaluate the effects of N placement on N\textsubscript{2}O emissions under irrigated, corn production. Band applied N had a higher (45%) N\textsubscript{2}O emission than broadcast N averaged over 3 site-years (Figure 5) (A. Halvorson and S. Del Grosso, unpublished data). Understanding the reasons why N\textsubscript{2}O emissions were higher with banded than with broadcast N application will require that N placement effects on N\textsubscript{2}O emissions be evaluated further under other soil, cropping system, and climatic conditions to obtain a broader perspective on the effects of N placement on N\textsubscript{2}O emissions from agricultural systems.

Summary

All controlled-release N fertilizers and UAN reduced growing season N\textsubscript{2}O emissions from irrigated, ST and NT continuous corn cropping systems when compared to urea; and UAN+AgrotainPlus did so consistently in comparison to UAN. Growing season N losses as N\textsubscript{2}O-N were consistently < 0.5% of

Figure 5. Nitrogen source and placement effects on soil nitrous oxide (N\textsubscript{2}O) emissions when averaged over strip-till and no-till systems (3 site-years). Average grain yields (t/ha) are shown in a white box within each bar. (1 t/ha = 15.9 bu/A).

Acknowledgment

The authors wish to thank the IPNI Foundation for Agricultural Research (with support from Agrium Inc., Alberta and Agrotain International, St. Louis, MO), Georgia Pacific Chemicals, LLC (Agrotain International and Georgia Pacific Chemicals are now owned by Koch Agronomic Services Inc., Wichita, KS), and the Fluid Fertilizer Foundation for providing product and financial support for this project. This publication is based upon work supported by the Agricultural Research Service under the GRACEnet project.

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture or the International Plant Nutrition Institute.

References

